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PULSE DOPPLER AMBIGUITY RESOLUTION

The author of this note has been involved with the analysis of
é¢xisting and future pulse doppler ambiguity resolution methods. The
exieting pulse doppler ambiguity resolution technique is supplied by

R.C.A. and a future algorithm i1s presented by this author.

R.C.A.

The R.C.A. algorithm is a least squares range error minimigation.
Given, the state differential model of range and range-rate informa-
tion

Q) =ax+B2+w , x(0) = X, 1)

where (o) de: otes d/dt

x(t) = xl(t) , w(t) = wl(t)

xz(t) Wz(t)
xl(t) = range yds
‘ xz(t) = range-rate yds/se~
r(t) = observed range yds
2(t) = observed range-rate yds/sec
wl(t) = range measurement error

wz(t) = range-rate measurement error

A-[)G],B-H (2)
0 0 0

and 6 = yda/aec/ spectral line conversion factor.

where
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Let the system observetions be given by

y=0Cx + ws(t) (3)

where C= (10) 4)

and w3(t) = pbservation measurement error.

R.C.A. uses the following criterion for optimality. They choose

to minimize J, where

T T
3 - l @ - x@2ae = | ] ey(e)]|?ae )
0 ‘0

The conditions for optime¢lity are weil! known and are given by the
maximum principle of Pontryagin. It is interesting to note that R.C.A,
chooses to minimize range error only. They do not attempt to minimize
the range-rate error ez(t). Secondly, the normed error Hel(t)||2 is
impiicitly weight2d by L "one". This may not seem critical, but it
means that all erro:s are considered equally independent of system
signal to noise ratios. Heuristically, if the range measprement
errors are stcchastirally small, then Any difference between r(t) and
its estimate xl(t) is significant, However, if the range measurement
noise is stochastically large, then apparent differences Letween r(t)
and xl(t) are no longer significant. In this case, only long term
error trends should be considered significant.

In summary, the author feels that there are some philosophical
disadventagee associated with R.C.A. methods. They totally iguore
range-rate errors ian their optimality criterion and they do not

weight the apparent error r(t) - xl(t) by a measure of system
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signal to noise. These two features make their method especially
sensitive to scintillations. This will be demonstrated in a simula-
tion found at the end of this report.

The computational method used to solve the required necessary
linear differential equations which define the optimal solution is
the method of invariant imbedding. This method is generally used on
norlinear mixed two-point boundary value problems. Needless to say,
using the invariant imbedding mefhod is a tremendous overkill when
applied to their two dimensional mixed two-point boundary value
differential equation.

R.C.A. alsc uses an unusual technique to measure the accuracy of
their algorithm. They compute the variance cf the apparent error
r(t) - xl(t) (This is called traditionally an innovations process).
If the error implies an error of greater than 1/2 spectral line
the estimation of g(t), namelyvxz(t) is considered to be Logus and
the estimation process is aborted. This is m¢aningful under ideal
low noise conditions only. As menticned before, R.C.A. does not use
information about system measurement noise (signal to noise).
Therefore, 12 a low noise case the variance of the error r(t) - xl(t)
does indeed represent estimation error based on the R.C.A.'s estima-
tion algorithm. However, if the system measurement noise is
stochastically large, the estimations of 2t), namely xz(t), coutrd be
statistically good but the error variance measure of r(t) - xl(t)
could be large due to system noise and not estimatioa errors. This
shenomenon has caused the system to "fiag," an error in the 2(t)

estimation when indeed there was no such error.

o
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In 1972 the author of this report developed a new algorithm
using invariant imbedding techriiques. The objective function

to be minimized was J, where

:
1
3
E

T
2 0 2
J = - x,(t) + || B@®) - x,.(t) - &x, (¢t) dt
l TR x Ilwl(t) ll Xy 1 ||Wz(t)

: 0
4
¢
j T
f 2 | 124 6)
: = Il E1(r‘)‘|wl(t) + 1l e ()| W, (t) t
0

e

Here, both range and range-rate errors are minimized. In additionm,

these errors are weighted by Wl(t) and Wz(t), respectively. The
weight wl(t) and Wz(t) are chosen to be the inverse of the assumed
a priori error variances assoclated with el(t) and ez(t). The '

: advantages of this technique can be found in a simulation found in .

the paper included in appendix A. iy
A new algorithm has been developed which holds promise #s an r
dot extraction system. It has been found to be the most accurate
and versatile algoritio tested to date. Its origin is rooted in
the theory of minimal variance filter (Kalman filter). ;’

Briefly, the minimal variance filter is known to be "the" 3'

optimal estimation algorithm for linear systems being corrupted by ;f
white noise with known covariances. The Kalman filter has been zf
successfully applied to a myriad of linear system problems. The ‘g
classic difficulties associated with Kalman filters will be noted at

[ the end of this section. The derivation of the algorithm is derived
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as follows:
given equation (1), nauely for x(t): n dimensional

X{t) = Ax(t) + B(t)B(t) + w(t) (1)
with x(0) given by

x,(0) = r{0)

xz(O) =0

and equation 3 for y(t) a scalar

:§ Y(t) = Cx(t) + vft) (3)

Let the a priori noise statistics be givea by _
€ ) = ¢ ' -
€ (wy(£)) = ¢ | O

cov (w(t) wi(r)) = V() 8 - )

cov (x(0)) = Vx(O)

T T T W T

cov (w(t) W3T(T)) =0

i

E? cov (w3(t) w3T(r)) - VVG(t - 1)

ﬂg Define the estimation error to be

| x(t) = x(t) - #(t)

.5 There exists a n x n dimensional positive definite symmetric matrix

error covariance matrix, say Vi(t), such that

cov (R(£) 27(£))= cov ((x(t) - R())(x(t) - &7 (£) = Vg (t) (9)
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Vi(t) - AV*(t) + vi(t) A" - v*(c) c vv (t) cvi(t) + Vw(t) (10)

with

V*(O) = Vx(O) (11)

With respect to the state ambiguity problem, Vi(t) becomes, for a = 2

0 2 -1
Vg(t)gq = 28V4 (), + Yu, " Va (t)yy Y

0 -1
Va(t)yp = Valtdyy 8 = Va(e))y V), YV, (0)

0 2 -1 1
Va(tdgy = sz(t) - Vg (V1 Vy ;

with Vi(O)11 - Vx(O)11 ’ Vi(O)22 - Vx(O)22 ’ V*(O)12 - V*(O)12 =0 (13)

The general estimation of x(t) in the presence of noise w(t) and v(t)

o
is given by, say 2(t).

R(t) = AR(t) + BE(t) + K(t)[y(t) - CR(t)] 14

where £(0) = Ea (x(0)) (15)
where é; denotes expected value
where K{t) is referred to as the Kalman gain and satisfies

1

K(t) = vi(c) T v, )

For the problem under consideration

e

B -1
Ve Yy

K(t) = (16)

-1
vi(t)12 vv

L _ '
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In general, K(t) is precomputed and stored off-line (sse appendix F).

The resulting estimation differential equation is
o o
al(c) - 6x2(t) + Kl(t) (r(t) - 21(t)) + r(t) 17)

o

2,(t) = K, (£) (r(t) - &, (1))
This algorithm has been under teat and has performed extremely well,
The results of this test are comparad side-by-side with the existing

R.C.A. algurithm. It slways produced a superior answer to that

obtained using R.C.A.'s method. In many cases the improvement was

drawatic, The results of the simulations can be found in sppendix B.
As previously noted there are soyc potential difficulties
assoc'ated with Kalman filtering., They ar2 in defining (usually
assuming) the initial covariances Vw(t), Vv (t), and Vx(O). These
quantities are generally assumed to be known. However, if the
assumption differs considerably from the actual noise covariances,
poor estimation and even divergence can result. Therefore, it is
important that a reasonably accurute estimate of these noise
covariances be made if satisfactory performance is to be 1nsurod._
The author of this report has several suggestions which, when
implemented, should provide W.S.M.R. with a very powerful and

sophisticated r dot estimation system.

Suggestion 1

The actual error covariance process, say VA(t)

@ T T T YT AT T T
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(rg(6) = 2, (r(6) - 2, (N EyCe) - 2,(0)
v = E

Eo®) - 2, (g0 - 2, Bo(o) - 2,(2)

can be computed directly using cbserved data and the estimation vector

2(t). The actual covariance VA(t) can be compared with the theoret-
ical error covariance Vi(t). The resultant error will then be used

to reprograr the a priori assumption on Vw(t) and Vv(t).

Suggestion 2

The MPS-36 oifers a unique feature which can serve to resca.e
the & priori covariancs matrices. ‘Lhat feature is the system A.G.C.
The output of the A.G.C. is a measure of system signal-to-noise ratiom.
This real-time measure of noise can be used to rescale the covarfance
data and taereby optimize the algoritim. Typical A.G.C. noise measure
data is presented and discussed in sppendix C. A new algoritlm, whichn
shall be called an adaptive Kalman/A.G.C. algorithm shall now be

developed.

Adar:ive Filtering

It was assumad throughout this work that over an averaging inter-
val, say 5 seconds, the noise statistics are stationary. A filter
wvhose a priori statistics are assumed to be constant over an averaging
interval shall be called a constant covariance filter. The noise
covariances asgsociated with the processes X and and X,, Ox equiv-
alently the output process y should be scaled proportional to the

app rant A.G.C, sigrel to noise ratio. It shall be assumed thst over

i b
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an averaging interval, the estimation subsystem': noise covariance
poasesses tha same qualithtivo time varying properties of the A.G.C.
noise meteric. Consider the following simulated rvesult which exam-

plifies the properties of tie adaptive Kalman/A.G.C. approach to pulse-

doppler parameter ectimation.

Example: Kalman Filter

The developed Kalwan Filter fine line estimation algorithm was
implemented cn r PDP-11/45 at The Univeraicty of Texas at E1 Paso. A
source listing can be found in appendix D. Several numerical exper-
iments were performed on the algorithm. All tests involve 5 second

averaging intervals, and an initial target rang~, velocity, and

acceleration of 100,000 yds, -1000 yds/sec, and 20 yda/sec2 respectively.

The first test investigates the algorithms sensitivity to the

choice of input covariances Vw and Vw for a given signal/noise ratio,
1 2

The experimental results can be found in figure K 1. It can be noted
that of the parameteric values tested, all choices tested successfully
in that the error &t 5 sec was considerably less than +.5 spectral
lines. llowever, qualitatively there were differences, It can be seen

that as the a priori estimate of Vw, and Vw decreases, the estimatijion
2

time constants also increase., That is, as the a priori assumption on

input noise decreases (ex: V" = ,001. Vw = ,001), the Kalman filter

1 2
is very reluctant to change its previous estimate eince it is asaumed

that the estimate was obtained in a good signal/to noise environment,

Contrapositively, if the input noise covariances are assumed to be

: :';
1

e e g N
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large (ex: Vwi- d, sz- «1) the Kalman filter will readily change
its previous estimate since it consider the previous estimate sta-
tistically uncertain due to increased signal/noise ratio. To use
the Kalman.filter optimally, the covariance weights should be deter-
mined experimentally or through simulation. A trade off is sought
between fast response ana therefore possible inaccuracies and a slcw

response which may present incomplete estimate at the end of an

estimation period.

The second experiment found in figure K 2, considers a parame-

terization of Vw for the indicated signal to noise ratio. Herr, Vw

1 1
is the noise corrupting the range constraint equation gl(t) (see eq. 1).

Due to the advantageous large signal/noise ratio, all parameterizations

were successfull and performed essentially the same. Therefore, it can

be assumed that the algorithm will work well over a wide range of

assumptions in the presence of good range data.

The third experiment, found in figure K 3, considers a parame-
terization of sz for the indicated signal/noise ratio. It can be
noted that the algorithm is sensitive to the choice of Vw' when sz-
1, the Kalman filter error gains are large. Therefore, t;e estimate
reacts rapidly to correct any apparent error. When sz- .01, the
Kalman filter error gains are small. This means the algorithm can
not react rapidly to apparent error. This explains the large error
between .2 and .6 seconds. Here it took approximately .8 seconds to

purge the initial estimation error from the estimation processes.

10
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Convergence is slow but methodical. The performance for Vw = .1 1s
2
found to be a compromise between the two extremes.

The experiments considered use a standard Kglman filter approach
to the fine line tracking problem in the presence of short term
stationary noise. The following experiments consider a radical time
varying of noise behavior. This hypothesis represents simulated

scintillation.

The fourth experiment found in figure K-4 involves such test.
Here a noise burst, over the interval 1 to 2.5 seconds, was numeri-
cally generated to decrease by 10 dB, the nominal range and range-
rate signal to noise ratio (assumed to.be 20dB). As a reference
experiment, le = sz = .01, and Vv = 1, for all time was assumed. It
can be noted that during periods of high scintillation, the reference
algorithm behaved radically. The errors generated during this period
remained with the estimation process in the future. Recall a decrease
in Vw produces a decrease in the Kalman error gain. Thus, a A. G. C.
noise meteric feedback can be used to reduce the Kalman gain during
periods of high scintillation. This reduced gain will forbid the

system to rapidly track apparent errors which are known to come from

a noisy environment. It can be noted that with the proper scaling of

Vw, significant improvements Jn the estimation processes can be obtained.

The fifth experiment found in Figure K 5 involves such a scintil-~
lation test. Here a nnise burst, over the interval 1 to 2.5 seconds,
was numerically generated to decrease, by }J"'’B, the nominal range and

range-rate signal to noise ratio (assumed to be 20dB). As a reference

11
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experiment, V =V = .0l and V_ = 1, for all time was assumed. It
vy v, v

can be noted that during periol: of high scintillation, the reference

f; algorithms behaved radically. The error and error rates that were

resident in the algorithm, when the noise figure returned to a

S st st DI VI T e

nominal value (de: at t = 2,5 seconds) wore such that the future error

performance was poor. It shall be shown that the Kalman gains are

o (T ST T

inversely proportional to V&. (This is implicitly the same as reducing

g s the value of Vw.) Therefore, increasing ihe value of the observetion

i L (output) covariance Vv in harmony with an A.G.C. noise meteric, to

P say 4 to 10, will selectively reduce the error gains in the presence

of noise burst, This has the property of stabilizing the estimate to

p—

! i‘ be a minor variation in the last estimate generated under good signal/
b #

noise ratio. It can be noted that significant fine line estimation

performance can be expected using an adaptive Kalman/A.3.C. philosophy.

It is of interest to more closely examine the quantitative ]

properties of the Kalman gains under varied parameteric conditions.

3
The trajectories of the Kalmen gains Kl(t) and Kz(t) (see eq. 13 and ‘

16) can then be found in figurcs Ki-1, K1-2, Kz-1, and K2-2. Consider

o T T

first Kl-1. It can be noted the Kalman gain Kl(t) ia inversely related

1
the differences between Vw and Vv. _ ;

This property can be witnessed again in figure Kl1-~2. A scip-

tillation burst is assumed to occur from 1 to 2.5 seconds. Here,

rescaling Vv will cause a decrease in the error feedback gain K 1

.
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n
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during periods of high scintillation. It is interesting to note that
the trajectory time constants are small compared to the averaging
interval. This feature will be developed in the next section. The
arguments associated with the Kalman Kz(t) are identical to tho

used with the Kalman gain Kl(t).

Steady-State Kalman Filter

Since it can be noted that the Kalman gain trajectories tend to
their steady-state value rapidly (with respect to the averaging
intervul) replacing the time varying Kalman gains with their steady
state value would appear to be justifiable. In additirn, if the
numerical integration of equation 13 can be bypassed. Thus a potential
problem as numerical divergence of the generating differential equa-

tion when large value of Vw or Vv are used, 1is avoided.

The steady stat- covariance matrix V*(t) positive definite

symmetric errnr must satisfy

d vi(:)
—a-E—'— - Vi(t) = 0 (18)
therefore
2 -1
0=28V. +V =-V& v
Rig W1 Epp v .
0o=6v. -v. v. v-1 (19)
% 'x :

222 12 %11 VY

2 -1
0=v -v2 y
V2 Ry v

13
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whick simplifies to the following algebraic relationship g

Ve =, V) 12
12 2 i
:_i'
v, =, @ev, +v N2 (20) P
11 12 1 P
v -V v vV §é
%2 2 %3V
a source listing of a steady state Kalman gain algorithm can be j

found in appendix E. There are several distinct advantages associated
with a steady state algorithm. First, it is trivial vo implement
since it only requires the algebraic computation of the gains found E
in equation (20). These gains are formally substituted into the
estimation differential equ-.tion (14). This equation is solved numer-
ically using any method applicable to constant coefficient state
differential systems (see appendix G). Secondly, a problem common to
all numerical integration methods is that they may diverge (ie:

induce a floating point error) for certain parameteric events. This

is particularly true when dealing with the error covariance differ-
ential equation found in Kalman filtering. The algebraic equation
found in equation (20) will produce an approximation error covariance
which cannot become numerically unstable. A numerical experimentc

used to demonstrate the effects of an adaptive Kalman/A.G.C. philosophy
is treated using the steady-state algorithm. Again, the a priori

noise covariance shall be chosen to be in harmony with the A.G.C.

error meteric. The result of this experiment can be found in figure KES-1

1%
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-2, The qualitative results obtaired are similar to those obtained
using an adaptive KXalman/A.G.C. algorithm. Due to it being purely

algebrai:, cannot diverge if its parameters are finite.

Tc show the utility of such a technique numerical experiments
were performed. The initial target information was identical to
that found in the Kalman filter test. However, the time varying

Kalman gains shall now be replaced by a steady-state approximation.

The first experiment, described in figure KSS~1, shows that the
steady-state algorithm error estimate does converge to an acceptable
error value over a wide range of Vw' The adaptive A.G.C. philosophy
was also integrated in a steady-state Kalman filter configuration.
The results of this experiment can be found in figure KSS-2. A
reference test using a 10dB decrease of a nominal signal to noise

ratio, namely 30dB, was assigned the parameteric value of Vw - Vw =
1 2

.1 and Vv = 1, It can be seen that erratic estimation behavior occurs

in the presence of strong scintfllation. As the a priori output
covariance parameter Vv is incceased in harmony with increasing noise,

the steady-state Kalman error gain decreases. The reduction in gain

results in reduced fluxuations in the fine line estimate during a high

noise condition. The adaptive steady-state Kalman gain algorithm is

an improved estimate.

15
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Conclusions

The existing R.C.A. ambiguity resolution method has been tested
and found to perform satiafactorily when the received data is scin- -
tillation free. These noise bursts produce extremely large estimation
errors and poor convergence properties, this is due to their algorithm
minimizing only range error, with a fixed time-invariant weight (name-
ly the number 1).

The new alzorithm using Kalman filter produces superior results.
It embodies the simultaneocus minimization of both range and range-
rate errors and uses optimal time varying weights, namely covariance
information. It is forcefully felt that using Suggestion 2 as the
modifier, the Kalman filter algorithm Qould give W.S.M.R., a reliable

and flexible MPS-36 based r dot extraction system. In this config-

uration, system performance would be limited primarily by hardware

limitations intriansic to the system.

16
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APPENDIX A

Pulse Doppler Ambiguity
Resolution

FRED ). TAYLOR
The University of Texas at El Paso
El Paso, Tex. 79968

Abstract

A mathemstical algorithm using the method of invariant imbedding
hmwmmmuomfuﬂmmdmpmdmp
rate from puise Doppler data.
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A pulse Doppler system has the ability to track moving
targets mn relatively stationary clutter in the presence of
high energy noise. The spectral representation of a pulse
train with a given PRF and pulsewidth r is given by the sin
(X)/X function whose firs: zero crossings occurs at 1/r and
the spacial frequency between adjacent spectral lines is
1/PRF. Thus at band (5650 MHz 2 f,) a &7 = 1 Hz implies
a resolution of 0.029 yd/s and a PRF =640 yields a
spectral spacing of 18.56 yd/s between lines. If a pulse-
width of lus is considered, then there exists over 1500
spectral lines in the interval [fo, fo + 1/7]. Thus a pulse
Doppler system is cursed by an abundance of ambiguous
spectral data about any arbitrary spectral line.

One ambiguity resolution technique that has been
implemented uses the method of invariant imbedding [1].
The algorithm developed was a direct adaptation of a set of
notes published by Bellman and Kalaba, Herein, the optimal
estimate was one that gave the “best”” £2 fit to the observed
range data. Since range rate is often considered to be a
more accurate data source than range data, any optimal
estimate should be optimally fitted to range-rate data also.

Consider then the following problem in terms of the
following state variables:

x1(f) = actual range
x3(f) = number of spectral lines (real number)
x,°(r) = observed range,

Observation dynamics:

range x, °(¢) = x, () — € (1),
€, (t) = measurement error (1)

range rate X, °(£) = %, (1) — x3 ()6 — €, (1),
€3(f) = measurement error  (2)

where 5 = 18.56 if PRF = 640.

If an cstirate x; (number of spectral lines in error from
a1 coarse track spectral line) is assumed to te constant over
aiz observation interval, then require

%3 =0. (3)

If a time-varying estimate of x;(r) is desired, then x,(r)
may be approximated by a power series in f whose
coefficients are chosen optimally. However, the additional
dimensionality requirements imposed on the solution proc-
ess makes this approach unattractive in general.

Defining

A= [.’t\h Q, ] {estimation vector) C))
e= [9, ) ’e\, }T (estimated error vector), &)
then
A __o04A
X =Xx," +¢; (range estimate) (6)
NO.1  SEPTEMNER 1973 "
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Fig. 1. System model.

and

q
3 %+ Q;G - /e\, (range-rate estimate)

>

e Mo

~

0 (spectral error estimate),
)
Let it be required that an objective function J be

minimized:

1 T A
5 llell 2 dr,  W> 0, disgonal.
()

The necessary conditions for producing an optimal estimate

X(r) are given by the Maximum Principle [2], and they

define the following two-point boundary value problem,
State equations:

J

il’) +Q’6_NW2
=flx, M= . , 8)
0

A
x

Costate equation:

W -8 Ao =0
A=g(x, ) = : ©)
"‘X|6 X(n= 0.

One technique used to solve two-point boundary value
problems is the method of invariant imbedding [3]. The
imbedding equation is known to be

ar(C, anC,
D XD et 1,0 =E D0 (10)
where A(T) = C (arbitrary class of functions) and ¢ has the
assumed form H(C, T) = %(T) + P(T)C; P = PT. Substituting
r into (10) yields the fixed-point boundary value problem
(thus bypassing the difficult two-point boundary value

mn

. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS

problem), in terms of z (estimated range error):

z g(-/x\] —i°)=P| 1 Wl(;l ‘X|°)+916 .=..P||W|Z +926

ooan

Qz =Puwn(9| -x,°) =Py, Wz, 2(0),9,(0)arbitury

' (1Y)
and
I
V Py =Py,8 =Py Py W
i Pra=P;, 1Py 3 Wy 0
| foprruta oL e
’ P12=Plzzwl

Equation (13) is solved off-line and stored to facilitate a
real-time estimation x (see Fig. 1). Since all the initial
conditions are arbitrary it is assumed that they would be
determined experimentally under actual mission conditions.
Finally, it is known from linear estimation theory that the
optimal choice of W is the inverse of the measurement error
covariance matrix which should be used, when available, to
admit a minimal variance estimate of x.

Exparimental Results
Given are the following obszrvations:
x°()=x,()— & (1)
X, °(0) = X,(1) — x2(1)5 — €2(1)
where
5 =18.56,PRF = 640, t € [0, 5], and T = § seconds.

The noise sources €,(f) and €;(f) are assumed to be
independent and normally distributed, N,(0, 0,?) and
N;(0, 0;3%), respectively. An initial spectral velocity error
of 5 lines is assumed (i.e., x3(0) = 5 =+ 92.8 yd/s error). The
actual velocity x,(¢) is to be 5000 yd/s for all time, and
the actual range is described by x,(f) = x,(0) + x, (t)¢ A
10 000 + 5000¢ yards. The measurement noise errer vari-
ances are to be (0, 0) (no noise case), (10%, 10?), and (10*,
10%), respectively. Thus the ideal estimation vector &, if all
measurement error could be suppressed, would be x, (1) =

SEFTEMBER 1972
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i
x,%(t) and .(",(t) = 0. The choice of W will determine the estimate requires minimizing both errors with respect to the
relative importance associated with minimizing €; (range measurement covariance matrix, or in this embodiment, it !
_ ezror) and €, (range-rate error) vshich are W, and W, will be assumed that W, = W,, since 0,2 = 0,2, is optimal. . ;
- dependent, respectively. Thus a range-dependent estimate It can be noted from Figs. 2, 3, and 4 that the optimal i
g would imply W, » W;, whereas the proposed ontimal filter matrix P(r) is sensitive to the choice of W. This
i 3
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sensitivity is reflected in the estimator's unstable behavior
as W, becomes much greater than W,. As indicated in Figs.
5, 6, and 7, the estimation tends towards the ideal estimate
2(t) lie, é(t) ~ x°)) = 0 and 9, = ( as the noise is
reduced and as Wy -+ W; ~ 1. It was also noted that the

ol

of W and noise sources N, and N3 (N (0,
10%) snd N4 (0, 10%)].

1EEE TRANSACTIONS ON AEROSPACE AND u.momc SYSTEMS

W and noise sources N, and N3 (N0,
100%) and N3 10, 100%)].

estimate § improves as fr‘, (0)—=0. in all cases, when
W, = W, = 1, the spectral error indicator x; possessed very
acceptable values and was superior to those found when
W, = 12.8 and W; = 0.008, Similarly, the best range error
performance occurred when W, = W,, which agrees with
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E the onginal hyputheses that an estimate based on both
[ range and range-rate data weighted oy an inverse convari-
ance relationship, will be superior to a weighted runge
! estimate only. A highly accurate range-tate estimate, in
; terms of resolving pulse Doppler ambiguous data, results.
g The achieved range estimate may be uscd to augment more
i classical putse delay ranging methods.
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P Grenrie: » Forc wuniun ns FilE B
E | 10 DIM G(4,3),X(101),2(101) APPENDIX D
'
[

25 DIM Q(4,50),8(4)
30 LET A=0:LET B=0:LET C=0
40 LET 11=0:LET D=18. S6:LET T=0:LET H=, 05

S0 PRINT"MISSION TIME",; SOURCE:KALMAN FILTER
85 PRINT #1, "MISSION TIME";
&0 INFUT NO , I
65 PRINT #1,NO '
100 FRINT"EURST TIMES AND SCALE FACTOR";
: 105 FRINT #1, "BURST TIMES AND SCALE FACTOR")
: 110 INPUT TO5T1:S
; 115 PRINT #1,TOiT1;$S
: 150 FRINT"INITIAL RANGE. . RANGE RATE. .. ACCELER/.TION";
; 155 FPRINT #1, "INITIAL RANGE . RATE RATE . ACCELERATION";
j 160 INFUTSO; §1; 2
145 FRINT #1,80;81;S52
- 200 LET X=1:LET 1=0
i 220 LET RO=SO:LET R1=0
: 250 FRINT"SIGNAL TO NOISE.. RANGE. . RANGE RATE";
' 255 FRINT #1,"SIGNAL TO NOISE RATIO . RANGE . RANGE RATE"
] 260 INPUT VIiVZ
! 265 FRINT #1,V1;V2
; 280 LET N5=0:LET Né=0:LET N7=0:LET NS=0:LET N9=0
{ 300 LET V1=10"(V1/10):LET VZ=10~(V2/10)
L 310 FOR $5=1 TO 3 1
x 320 LET 2=50:60 TO 1000 |
¢ 330 PRINT #1, "RESCALE ECHO"; S/(V17°2)3 1/7(V142); %: : % S/(V2°2)) 1/(V2~2) ;
L 250 PRINT"VWL....VWZ2. ...VOBS" {
[ 255 PRINT #1,"VWl . VW2 . VOBS"; :
3 260 INPUT W3, WY, W7 : |
T 345 PRINT #1, WS WP W7 i
3 400 FRINT"RESICALE"; i3
: 405 FRINT #1, "RESCALE"; i ]
420 INPUT 53, §¢, S7 a
425 FRINT 1,58, §9, 87 i
500 PRINT ' #4333t 4 3t 3t 36 340" il
600 PRINT #1:FRINT #1:PRINT #1 !
L 700 PRINT i1, "TIME RANGE ERROR LINE ERROR GAIN Ki GAIN K2" -
1 720 PRINT i1 L
ﬁ 800 FOR I=1 TO NO/. 05
Y00 REM TARGET NOMINAL
910 LET RO=SO+T#S1+T#T#S2/2
920 LET RI=S1+T#52
1000 REM TARET
1020 LET N1=0:LET N2=0
] 1040 FOR K=1 TO 1Z
- 10460 LET N1=N{+RND(I1):LET N2=NZ+RND(I)
. 1020 NEXT K ;
* 1100 REM NCOISE GEN 1
1200 LET MN1=N1-4:LET N2Z=N2-6 :
1210 LET NS=NS+1:LET N&6=N&+N1:LET N7=N7+N2:LET NE=NS+N1~2: LET N9=N9+N2~2 ;
L 1220 LET W=1:LET Wi=W7:LET W2=W3:LET W3=W9 z
1240 1F T4<TO THEN 1300 ‘
1260 IF T>T1 THEN 1300
1270 LET R“*RO
1280 LET W=5:LET W1=57#W7: LET W2=SS#W8: LET W3=S9#W? '
1200 LET RO= “RO® (1+WEN1/(V1~2) )
1320 LET RI=R1#(1+W#NZ/(V2°2)) :
13240 IF 150 THEN 2000 '
1240 GO TO 220
2000 REM KALMAN GAINS 5
2020 LET Ki1=0:LET KZ=0:LET K3=0 ;
2040 GOSUB 8000 -38- :
“0 LET G(1, 1)=F1:LET G(1,2)=F2:LET G6(1,3)=F3 *
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. 2100 uuguk ©000 :
2120 LET G(2, 1)=F1:LET G(2, 2)=wF2: LET G(2, 3)=F3
2140 LET Ki=M#F1/2:LET K2-H*F2/2 LET K3=H#F3/2
« 21460 GOSUB €000
: 2180 LET G(3, 1)=F1:LET G(3, 2)=F2: LET G(3,3)=F3
- 2200 LET Ki1=H#F1:LET K2=H#F2:LET K3=H#F3
S+ . 2220 GOSUR 2000 '
2240 LET {4, 1)=F1:LET G(4,2)=F2: LET G(4, 3)=F3 II
2260 LET A=A+H#(G(1, 1)+2#G(2, 1)+2%G(3, 1)+G(4,1))/6
2280 LET B=R+H#(3(1, 2)+2#G(2, 2)+2#G(3, 2)+6(4,2))/6
, 2300 LET C=C+H#(G(1, 3)+2#6(2, 3)+2%G(3, 3)+G(4,3))/6
[ 2540 IF ABS(A)>1E20 OR ABRS(B)>1E20 OR ABS(C)>1E20 THEN 7000
: 3000 REM STATE ESTIMATIONS
oo 3020 LET K1=0:LET K2=0
2040 GOSUB 4000
3040 LET G(1,1)=F1: €T G(1,2)=F2
2080 LET K1=H#F1/2:LET K2=H#F2/2
i 2100 GOSUB 6000
¢ 2120 LET G(2, 1)=F1:LET G2, 2)=F2
2140 LET Ki=H#F1/2:LET K2=H#F2/2
2460 GOSUB 6000
2420 LET G(3, 1)=F1:LET G(3, 2)=F2
2500 LET Ki=H#F1:LET K2=H#F2
3520 GOSUB 4000 _
3540 LET G(4, 1)=F1:LET G(4, 2)=F2
4000 LET Z=Z+H#(G(1, 1)+G{2Z, 1)#2+G(3, 1)#2+G(4,1))/6
4020 LET X=X+H#(G(1, 2)+G(2, 2)#2+G(3, 2)#2+G(4,2))/6
4G40 IF ARS(Z)>1EZ0 OR ABS(X)>1E20 THEN 7000
4500 LET T=T+. 0S5 . ‘
) 4600 LET TS=I-INT(I/4)%4 ' 1
' 44620 IF TS<>0 THEN 4800 ‘ ;
H 4700 PRINT X, A/Wi, B/WI

T L B
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@ 4710 PRINT #1, I*H , 2-R2 ) X , » A/WL B/l !
i 4715 LET S4=INT(1/4) . :
. T 4720 LET Q(SS, S4)mX

4200 NEXT 1 1
4210 LET T=0:LET A=0:LET B=0:LET C=0:LET Xw=0:LET Z=SO
4220LET X=1 :LET I=0
4330 NEXT SS
2840 LET S6=0
4250 FOR S1=1 T0 3
480 FOR S$2=1 TO 25
4270 IF SAD=ABS(Q(S1,S2)) THEN 4890
4220 el S4L=ABS(R{(S1 S2))
1 4590 NEXT S2
: 4900 NEXT S1
4910 FOR Si=1 TO 3
4920 FOR S2z=1 TO 25
4930 LET R(S1, $2)=0(S1,52)/56 !NORMALIZED SOECTRAL LINES
- 4940 NEXT S2
4950 NEXT S1
4970 STOP
4920 FRINT #1:LET N6=N&/NS: LET N7=N7/NS: LET N8=N8/NS-Nb&:LET N9=N9/NS-N7
, 4990 FRINT !, "MEAN AND VARIANCE. .. RANGE"; N&i N8i "RANGE RATE": N7i N9
1 5015 FRINT #1:PRINT #1
o 5020 FPRINT #1," SPECTRAL LINES IN ERROR" ,
' 5025 PRINT {1, TAB(30); "0" i
030 FOR S=1 TO 25 ,
5040 MAT S=ZER -
5050 LET I=-2 ,
5040 FOR M=1 TO 3
SOZ0 FOR J=1 TO 3
50%0 IF J=5(1) THEN 5200
5100 IF J=S(2) THEN 5200 39
5120 IF 0(J, 5)<=1 THEN $5200 o i
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S200
5210
S220
S400
541¢Q
S420
500
S4600
S700
&QQ0
&0Z0
&040
&£100
7000
7003
7020
70235
7040
8000
£010
8020
030
8740

9900
999

vt o i A0 A ot ek s e

Xl
LET S(M)=]10:LET I=m-2
NEXT M
FOR J=1 TO 3
LET S(J)=20#Q(S(J), S)+30
NEXT o
FRINT 41, S#. 2; TAB(S(3) )5 "#") TAB(S(2) ) “%"; TAB(S(1) )1 "#"
NEXT 8§
GO TO 100
REM STATE FUNCTIONS i
LET Fi1=R1+A#(RO~(Z+K1))/W1+D#{X+K2)
LET F2=E#(RO~(Z+K1))/W}
RETURN
FRINT"ERROR DETECTED"
FRINT #1, "ERROR DETECTED"
FRINTI; Z) Xi A1 Bi C: W2 W31 W1
FRINT #1,Zi XiAi B: CiWzZi W3 WL
GO TO 20
REM KALMAN FUNCTIONS
LET Fl=22#(B+K2)#D—-((A=-K1)"2)/W1+W2
LET F2Z=(C+K3)#D~(A+K1)#(B+KZ) /W1
LET F3S=W3~((B+K2)"2)/W1
RETURN '
CLOSE 1
END

III

40
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APPENDIX E . oo
BURST TIMES ANDI SCALE FRACTOR1 OPCN"KB: " FOR OUTPUT AS FILE 1
10 DIM G4, 3), X(101),2¢(101) '
25 DIM (4, 50),5(4)
30 LET A=0:LET B=0:LET C=0
40 LET I1=0:LET D=18 S6:LET T=0: LET H=. 03
S0 PRINT"MISSION TIME":
55 PRINT #1,"MISSION TIME"™ ~ SOURCE: STEADY STATE
&0 INFUT NO .
65 PRINT i1, NO ~ KALMAN FILTER
100 FRINT"EURST TIMES AND SCALE FACTOR"; I
105 FRINT 41, "BURST TIMES AND SCALE FACTOR";
i10 INFUT TO:iT1:S
115 FRINT #1,T70; T1) S
150 FRINT"INITIAL RANGE. . RANGE RATE. .. ACCELERATION"; .
155 FRINT #1, "INITIAL RANGE . RATE RATE . ACCELERATION";
1460 INPUTSO0; S1; 82
145 PRINT #1,850;61:82
200 LET X=1.LET I=0
220 LLET RO=S0:LET Ri=0
250 FRINT"SIGNAL TO NOISE.. RANGE. . RANGE RATE")
255 FPRINT #1, "SIGNAL TO NOISE RATIO . RANGE . RANGE RATE"
260 INFUT V1, V2
2695 PRINT #1,V1;V2
270 LET NS=0:LET N6=0:LET N7=0:LET N8=0: L.LET N9=0 _ _ R
200 LET V1=10"(V1/10):LET V2=107(V2/10) : i
310 FOR 55=1 TO 3 ) :
220 LET ZI=%0:G0 70 1000 ' .
220 FPRINT #1, "RE:CALE ECHO"iS/(V1°2)i 1/(V172); "::"sS/(V2°2); 1/7(V2°2) ‘4
350 PRINT"VWL....VW2 ...VOBS" | ]
55 FRINT #1,"VW1l . VW2 . VOBS"; A
260 INPUT WS, W2, U7 S ) "
265 FRINT 1, WE; W9 W7 "
400 FRINT"RESCALE": )
405 FRINT #1, "RESCALE") ' . %
425 FPRINT #1,38,59,S87
SO0 FRINT 3463t 3t 34336 Y
A00 FPRINT #1:FRINT #1: PRINT #1 ’
700 FRINT 41, "TIME RANGE ERROR LINE ERROR GAIN-K1 GATH K2*
720 PRINT 41 :
200 FOR I=1 TO NO/Z 05
200 REM TARGET NOMINAL
Y10 LET RO=S0+T#51+TH#T#S2/2
920 LET R1=51+T%S2

1000 REM TARGET 3
1020 LET N1=0:LET N2=0 B
1040 FOR K=1 TO 12

1040 LET NI=N1+RND(I):LET N2Z=NZ+RND(I)
1050 NEXT K b
1100 REM NCOISE GEN

1200 LET N1=Ni-6:LET N2=N2-4

1210 LET NS=NS+1:LET N6=N6+N1:LET N7=N7+N2: LET NS8=NS+N1~2:LET NP=N9+N2~2
1220 LET W=1:LET W1=W7:LET WZ=WS: LET W3=W9

1240 IF T<TO THEN 1200

12460 IF T>T1 THEN 1300

1270 LET RZ=RO

1220 LET W=S:LET WI=S7#W7: LET W2=S8#W3: LET W3=S9#W9?

1200 LET RO=RO#(1+W#N1/(V1~2)) \
1220 LET Ri=R1#(1+W*N2/7(V2"°2)) !
1240 IF 130 THEN 2000 41 ‘
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2000
2020
2040
20460
29460
000
3020
2040
2060
020
3100
2120
3140
3460
34320
2500
3520
3540
4000

4020

4040
4500
4600
4&20
4700
4710
4720
4300
4310

REN OALMAN hAINb

LET B=SR(WI#WR)

LET A=SRR(WA#{(2#D#B+W2))

LET C=A#B/(0O#W1)

IF AES(A)I>1EZ20 OR ABS(B)>1E20 OR ABS(C)>1E20 THEN 7000
REM STATE ESTIMATIONS

LET K1=0:LET K2=0

GUSUR 6000

LET G(1,1)=F1:LET G(1,2)=F2

LET Ki=H#F1/2: LET K2=H#F2/2

GOSUR 6000

LET G(2Z, 1)=F1:LET G(2,2)=F2

LET Ki=H#F1/2:LET K2=H*F2/2

GOSUEB 6000

LET G(3,1)=F1:LET G(3,2)=F2

LET Ki=H#F1:LET KZ=H*F2

GOSUR 6000 .

LET 53(4, 1)=F1:LET G(4,2)=F2

LET Z=Z+H#(G(1, 1)+4G(2, 1)#2+G(3, 1)#2+G(4, 1))/6

LET X=X+H#(G(1,2)+G(2, 2)#2+06(3, 2)#2+G(4,2))/6

IF ABS(Z)>1E20 OR ABS(X)>1E20 THEN 7000

LET T=T+. 05

LET iS5=I-INT(I/4)#4

IF TS<>0 THEN 4800 -

FRINT I#H; Z; X; Ai Bi Ci W21 W3 W1

PRINT#1, I#H » Z=R2 ' X ) ARWL s B*W1

LET S4=INT(I/4):LET Q(S3, S4)=X

NEXT I

LET T=0:LET A=0:LET B=0:LET C-O LFT X=0: LET ZI=SO

II.

43Z0LET X=1 :LET I=0

4320
43240
4250
4540
LTTO
45020
asw0)
400
4910
4920
4920
q4%40
4530
4970
Qz0
4590
5009
501¢
S0Z0
S023
S0OZ0
5040
5050
S0A0

SGS0
020
2100

‘L1110

S1ro
5140
5200
5210
5220
5400

e

MNEXT 55

LET S6=0

FOR S1=1 TO 3

FOR S2=1 TO 25

IF S&>=ABS(Q(S1,52)) THEN 4890

LET S4=ABS(RA(S1, S2))

NF® 52

MELC S

FOR 31=1 TO 3

FOR S2=1 TO 25

LET G(S1,S2)=0(S1,S2)/86 !'NORMALIZED SOECTRAL LINES

NEXT S2

NEXT S1

STOP ]

FRINT #1:LET N&6=N6/N3:LET N7=N7/N3: LET N3=N8/.id~NA: LET NZ=N9/NS-~N7

FRINT #1, "MEAN # VARIANCE. . RANGE" 1 N&6; N8; "RANGE RATE. . "1 N7: N9

PRINT #1

RO E N [

FRINT i ™ EPECTRAL LINES IN ERROR"

FRINT #1, TAB(30); "O"

FOR S=1 Tu 25

MAT S=7ER

LET I -2

FOR M N

FOR J
.

-

()

(

3
J 1) THEN 5z00
J 2) THEN 5Z00
ir o= (d) THEN 5200
IF QG4 3)<=1 THEN 5200
LET I=(J,S): LET 10=J ‘
NEXT J
LZIT 5(M)=10: LET I==2
NEXT M
FOR J=1 TO 3 42
PET SO0t A (S (U), $) 430 -

IF
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S500
SLO0
S7Q0
&HOQ0
&020
&040
&100
7000
7005
7020
7025
7040
9900
999

T ARLTN

ERINT WL, 6%, 20 TAB(S(3))) an) TABCST2) )Y waW) TABISTT Y mom ~ ~ -

NEXT S
GO TQ 100
REM STATE FUNCTIONS -
LET FI—R1+A*(RO—(Z+h1))/w1+D*(X+K2)
LET F2=R#(RO-(Z+K1))/W1
RETURN
FPRINT"ERROR DETECTED"
PRINT #1, "ERROR DETECTED"
FRINTI: ZiXi A Bi Ci W2 W31 W1 III
PRINT #1,2Z) XiAiBi Ci W2) W3i W1
GO TO 30
CLOSE 1
END

43
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APPENDIX F

Comput. & Elect, ngng, Vol. 2, pp. 105-113, Pergamon Prese, 1973, Printed in Great Britain.

1)

ON THE COMPUTATION OF KALMAN GAINS
FRED J. TAYLOR

Department of Electrical Engineering, University of Texas at El Paso, El Paso, Texas 79968,
US.A,

(Received 13 May 1974)

Abstract- - Modem filtering methods often require high order matrix differential equations to be
solved. Standard numerical methods are traditionally slow and prone to be unstable. A numerical
approach to the problem of computmg the Kalman gam matrix is developed which is both numeric-
ally efficient and stable. If a piecewise approximation of the Kalman gain matrix is demed
efficiencies of many orders of magnitude can be realized.

INTRODUCTION

Contemporary systems literature is rich in the study of minimal variance filtering theory
as applied to linear constant coeflicient differential dynamic system corrupted by stationary
white noise[1-3].

The high level of activity in this area has produced numerous papers on the utility, as well
as the dangers, of filtering. However, in the embodiment of literature, little aitenticn has
been given to the numerical problems associated with computirg the t=quired tiz..2 va-ying
matrix gains (Kalman gains). Such problems are usually trew‘ed through nec-classic
Runge-Kutta, Milne, Adams, etc. methods, They are often slow. The: can sonretimes be
forgiven if a non-real-time filtering is sought. Besides being slow, thcy are inherently
unstable. This cannot be tolerated in most applications. Therefore, a computationally fast
and stable algorithm shall be sought.

Problem
Let a n dimensional message model be given by
k(t) = Fx(t) + Gw(0) (1)
with r observations given by
z(t) = Hx(t) + o(1). @
Let the white noise processes be dcfined as usual.
E{x(0) = xo: E(w(1) = E(v(1)) = 0
var(x(0)) = V.(0); cov(x(G)wT (1)) = O
cov(w()wT (1)) = V,6(t—1) 3)
cov(p(t)o" (7)) = V,6(: — 1)
cov(w()rT (1)) = cov(v(t)w'(7)) = 0

105
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106 FRrED J. TAYLOR

"he minimal variance estimate of x(t), say (), is known to satisfy [3]
() = F2(t) + K(O[z() = H2(0) @
K(f) = Vy(OHTV,"? &)

where %(f) is the extimation error (i.e. %(¢) = x(¢) — £(t)) and V,(t) is the error covariance
matrix satisfying

Vi) = FV() + Y(OFT = Vi(OHTV,” ' HVy(1) + GV,G" (©)
V1(0) = V(0).

The heart of the filter is quantifying the error covariance matrix V;(1), for ¢ > 0. This is
in general a non-trivial numerical problem- However, a recent work of Davison and
Maki(4], with improvements by Taylor{5), can be adapted to provide a rapid stable )
solution of equation (6). It utilizes an approach suggested by Sage[3] (but also discouraged
by that author) which interprets equation (6) as a 2n x 2n first linear differential system. '

. Consider, for N = 2n,a N dimensim_\al vector §(1) satisfying
—FT 'HTY-1H .s
= —omad i e T A
(0 =| G e ¢ 0 s a0 ™
N»x N

This solution of equation (7) is characterized by the matrix exponential

. .. — ¢ll(t)n!n : ¢;2(t)uin]
a exp(g‘) N [¢Zl(')nlu : ¢22(')nln (8)
N xN
It can aiso be shown that et i
Va(t) = [@21(t, to) + 22 (1, to) Va(0)}[ s, (1, to) + y4(t, to) Va(0)) 2. ) _ - l‘

Therefore, computing ¥, has been converted into a problem of computing the n x n
matrices ¢, ,(t), i = i.2,j = 1,2. The following algorithm can be used to efficiently produce '
those desired matrices.

Numerical solution *-
The modified Crank-Nicholson matrix approximation is given by [4, 5] :
exp(dh) = C + O(h%)
where
C=[I- h3/2 + RRY12)"'[] + h2/2 + h*R?/12) (10) ;
A4S !
S X ' | j
- . »
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On the computation of Kalman gains 107
E L,
] . A
' ¥ \‘ where h is a scalar (step size) and O(h®) denotes a fifth order of error accuracy, (Runge-Kutta
i RK4 methods provide only fourth order accuracy). The commutative property of the
P fundamental state transition matrix exp (#¢) admits the generation of @, ,(t) { = 1,2,
J = 1,2, sequentially since
exp(dPh).= C
g exp(A2h) = C?
' (11)
‘* exp(#T) = CV.
. For some prespecificd step size h, suppose T = 2*h. A binary coded scheme to produce
! the requircd powers of C, namely
' * Ct=cC'.C!
‘; C! - C2 . Cl ‘. 4
L ct=C*.c*
etc.
E
f : would require 2*N3 multiplicative operations. if 2* » N2, it is shown in (5) that from the
i application of Bocher's formula, this can be reduced to only 2*N? multiplicative operations. '
i Bocher’s formula yields the following results:t
F' (i) Let C*, C3,... C"~! be computed. . ;
, (i) Define . ' Aj
%,‘ ofN-1,0=T, I.
alN - 2,0)=(@(N - ,O)T; + Tp)/2 f
E
- L
«(00) =( Y, «(i,0T; + TN o |
=1 P
where T; = trace (C'\ i = 1,...,N — 1.
i :
t Bocher's forriula is erroncously transcribed in Ref. [0). It is derived in Appendix A.
| j
#4 0 |
K . '
. - 3
. ) LI
. * . ' ]‘

. , .
* .
. . . .. ‘ -
’ . . .. .
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(iii} Define for m > 0
aiN—-Ilm=a(N-2,m—1)—a(N - 10)a(N -1I,m—-1)
a(N-2m)=a(N-3m~1)—-a(N-20aN-1,m-1)

a0, m) =0 — a0, 0)a(N — 1,m — 1)

(iv) Then .
N-1
Ch*"m= Y alimC,0Ssms2' - N
’ f=0 .
Once (i) and (ii) have been precomputed, all successive powers of C can be generated recur-
sively. Besides realizing a speed improvement, the entire program could be effectively '
i M embedded into the now available microprogrammable minicomputers. Thc , 'oposed ‘
{ algorithm would require N + N? memory word locations to support the recursive opera-
3

«  tion. It is interesting to note that the developed algorithm does not require production of
the cigenvalues of C. Therefore, one of the main objections to fundamental solution based
techniques, namely solving the characteristic polynomial det (Al — C) = 0, is not an issue.
The solution technique proposed is ouilined in Fig. 1.

r
%
]
[
INITIALLZE
Vo (0),FH VWV LGB
1 vi'e k
: KALMAR GAINS
Fiw ‘ REAL TINE : i
[ OUTPUT v, (Vh) = )
3 toh } L conruts ¢ _(store) e '
1 (c"“w"uvl(n)). |3
- GENERATE INITIAL PARAMETERS C
5 a(i.0), o1, .. ¥ .
: k N ] -1 L4
[ (¥ o vy ' ) {
1 [eoicer ] 1 B
. t ;
)
! GENENATE AND STORE ’ !
: 2herenn . Jm— % E
;
]
A i
’, V‘(ih) i
|
4 [ 33 1% 200 N .
=
3 UPDATE PARAMETFR SKT (STORF) ..
,‘; alib o fol,..iyn h ]
i 1 )
- ;
COMPU'TE €
N
L
Whoe s -1 oettandd
11 RECURSIVE ALGORTTHM

Fig. 1.
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On the computation of Kalman gains 109

Heuristic extension

Kalman gains are usually most active near ¢t = 0. As t - oo, K(r) tends exponentially to
some steady-state value provided the plant-observer pair are stable. Therefore, it would
seem reasonable that a variable step-size algorithm could be developed which would
accelerate the solution process. The veriable step-size zlgorithm should give a denss time
domain cover where K(t) is most active (i.e. t &~ 0) and be sparse wher= K(¢) is inactiv
(K(1) =+ ). Consider then the construction of an algorithm which will produce a piecewise
constant approximation to K(t) Let this suboptimal gain matrix satisfy the following
criterion:

Criteria (piecewfse continuous approximation)
Let K’(t,) be a piecewise continuous approximation of K(t) over t, < t< t,,,, where
1K' t) — KD £ ¢ (12)

& > 0. Here & serves as a prespecified admissible error bound on the approximation process.
A small (large) ¢ would result in a finely (coarsely) refined approximation of K(¢). This thesis
can be effectively accomplished by means of the binaiy coding scheme previously mentioned.
Consider the following “variable interval-—e meteoric” Kalman gain algorithm.

Define the matrix norm of a N x N square matrix A to be

Al = max {|Ayl} Cee
i=12...,N 13

j=12,...,N.

Procedure
No.1 Choose h sufficiently small so that O(h®) error is tolerable
Nu.2 Compute C! = exp (9#h)
No.3 Compute C***" = C¥. C¥;1=1,2,3,...
No.4 Test: If|C*""" — C¥) < ¢
(i) if true
let C*' = exp (%)
for2h <t <2ty -
(i1) if not true
reduce search interval tn some t such that 2'h < T < 2% 'h — § where
0<d<2h
Return to No. 4.

Some obvious interval reducing methods would be an equal interval, dichotomous, or
Fibonacci search methods. However, from a computational efficiency viewpoint, the
following approach has proven most effective.
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TIME AXIS SEGMENTATION

t
4 1 141 141 141 141 2 2% aee
1 15 ¥ ¥ 7
‘ .4 3 2 1 0 INDEX r
]

Fig. 2.

Suppose C?' has been computed and accepted at time ¢t = 2'h. Suppose further that the
last S computed matrices, namely C¥, C3~ Y, . C¥!~* are stored in memory. Compute
C** D a5 in No. 3. If it fails test No. 4. Reduce the search interval by testing C*' sequentially

ST TR o e A AE

against
F cH+HT = c.c = {1,2,..., 8} (14)
z Here C*'* 21" can easily be generated by direct binary operation from matrices found in ,
- memory. The reduced interval is a monotonically decreasing sequence over the index set r.
: It is characterized in Fig. 2. In practice, the number of previously computed and stored '
! ! matrices, indexed by S, is to be determined experimentally. Since memory requirements :
are generally considered to be a secondary goal when compared to computational speed, ..
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On the computation of Kalman gains 111

cne can usually be optimistic in one’s choice of S. If it should turn out that the choice of §
was iasufficient to support the piecewise constant approximation process, the required
powers of C can be synthesized directly from binary operations on C. Therefore, a solution
is always recoverable. The suggested approximation process is depicted in Fig. 3.
Steady-state Kalman gains

Steady-state Kalman gains can now easily be computed. Using a o test, the Kalman gain
at some time f, = 2'h can be rapidly computed using base-2 algorithm. The Kalman gains
are assumed to have non-oscillatory behavior, for ¢, sufficiently large; then the steady value
of K(t) may be assigned the value K(¢,,,) if,

IK(ti+1) — K(t)l < 0,6 = 2'h, 0 > 0. (19)

If the heuristic algorithm is used, which maintains a history of the last § “power of C”
operations, namely

{CZI, Czu- “’ vens Cz(l‘ﬂ}

then it would be reasonable to assume that the last S Kalman gains are also stored in
memory. Let the following n x n gain matrices be found in memory '

{K(t), K(t;-y), ..., K(t_g)}. (16)
Consider the Kalman gain matrix to have obtained a steady-state value if

§
Il Zo K- )l < a/(S+ 1) (1Y)
i=
and let the steady-state value of K(f) be assigned the value K(t,).

KALMAN FILTER GAIN CONTINUDUS RND PIECEWISE CONTINUOUS
GRAPH | CONTINUOUS [THY RUN TIME 294 MSEC

ALGOR
GRAPH 2  EPSILON = .01 RUN TIME 72 MSEC
GRAPH 3 EPSILON = .1 RUN TINE 12 KSEC
GRAPH 4  BASE 2 ALGORITHM RUN TINE 6 MSEC
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112 Frep J. TAYLOR

Example 1 (scalar example)

Find the Kalman gain associated with the system
x0=<-05x+w ust<2048
. Z=x4v
, cov(w(t), w(t) = 26(¢ — 1)
' cov(v(t), vlz)) = 1/48(¢ — 1)
cov(x0), x(0)) = 0.
The solution to the above problem can be found in Sage (p. 244), and is

= 33¢ 1
K(t) = V;(OH'V, ! = —1/2 + 1/2 33ttanh( — +tanh“———~’.
0=V / 12 /2 NG

The solution obtained using the new proposed algorithm, over u < t < 2:048, in steps of

0-001 sec, is denoted in graph 1 of Fig. 4. It was always accurate to within 8 decimal places. .
) It required 294 msec to complete the solution. Using the heuristic technique cited in the

paper, an epsilon of ¢ = 001 and ¢ = 0-1 were tested (see equation 12). They are graphs 2

and 3 of Fig. 4 respectively. The test associated with ¢ = 0-01 produced an excellent piece-

wise constant approximation to K(t) in only 72 msec. Using the fastest algorithm possible,

namely the base 2 algorithm, an approximation of K(t) as t =+ oo and produced in only 6

msec. This result appears as graph 4 of Fig 4.
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g Example 2 ~ E ‘?
: . Given ' _ ]
b, 6 1 0 0
1 - x() = 0 0 1]x(e) + |0 |w(e) J
-1 -3 -3 1
2(1) = (100)x(¢t) + v(t) ’ 1
‘r where b ;
v, =1
. b= 1
Vioy = 1.

The Kalman gain matrix K(¢), over 0 < ¢t < 1, was computed using conventional RK-4 as
well as the proposed algorithm, using a step size h of 0-01 sec (the solution obtained using
the new algorithm can be found in Appendix B).* Using a RK-4 approach, a solution was
obtained in 38,320 msec. Using the new algorithm, a solution was obtained in only 16,312
msec.t Furthermore, any reduction in step size h caused the RK-4 method to diverge.
However, the proposed algorithm was found to be stable and independent of the choice of h.

..

* Appendix B availeble from author on request. )
t 15,455 msec where needed to compute CL, L = 3,4, . ., 100; 857 msec where needed to initialize the problem.
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On the computation of Kalman gains 113
If the order of a system is increased from n, to n,, there would be a resulting increase in

time expended on the computation of K(t). Suppose it took K, sec to compute ¥,(1) for a
n, x n, system. Then computing V() through R-K methods would require approximately

o)

more multiplications to generate the right-hand side of
Pe(e) = FVa(0) + Vo(OFT — Vi(QHTV,” IV (1) + GV,GT.

=)

more integrals to solve, it would take approximately (modulo housekeeping programming)

(o) + G

seconds to compute V(1) for the n, x n, system. The proposed algorithm would require
ﬂ 3 _ '2 3
2n,|  \n,

N-1
C' = Z a‘C'

i=G

il

Vi(t) = (@2 + $23V2(00] [y, + ¢y, V(0]

Since there are

more multiplications to construct
and approximately

more to compute

If it took K, sec to compute the solution of a n; x n, system, it would take approximately

<) o]

seconds to solve the n, x n, problem. Therefore, there would be a general speed improve-

ment of (for n,/n, > 1)
n\*  [m,)\2
K,| 83 -2
l[ ("l) " ("l) :|~ 2K,

e

in favor of the proposed method. In terms of 3rd order benchmark problem, this speed
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improvement factor equates to approx. 4. This can be a meaningful savings when the
computation times become long.

However, the heuristic algorithm, previously discussed and tested in example 1, has
been shown to be a great saver of computer time. Several orders of magnitude may be
saved if a piecewise continuous approximation of K(f) is acceptable,

CONCLUSIONS

The theory, methodology, and supporting examples of a new Kalman gain matrix
algorithm have been presented. The results to date are most satisfactory in terms of accuracy
and speed. The heuristic algorithms discussed have proven to be a very worthwhile trade
off between accuracy and speed. Finally, an effective approach to the problem of estimating
steady-state gains was discussed and supported with an example.

The developed algorithm and sample output is available from the author. It is coded in
Fortran IV and appears in three parts. The first part is a program dedicated to the generation
of the required powers of C. The second part interprets the powers of C as a Kalman gain
matrix. The third part is a general matrix package. The program currently will handle a
10th order system but can easily be expanded upward.
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APPENDIX A

Bocher’s formula
From the Cayley-Hamilton Theorem, a n x matrix A satisfies
A" =gl + ay0d + ... + @y 204" "2 + ap_y 0A""!
then
A = A" A = (ag0l + 204+ ...+, 404" 1A
= (oA + #1042 + ...) + Ay_ 0A"
= (0o0d + @y 042 + ..) + Ay g ol@o0f + ay o4 + ... + ayog0d""Y).
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Collecting terms, and defining A"** to be

-
, . A m g d +ag Aty A
one obtains '
Rg,1 = My 00
Xy =090+ Ay_y,0°% ¢
i
: . Xn—1,0 = Oy_20 F Cyy,0° Uy,
¢ Continuing in this manner, the following inductively follows
‘ n=1
;[ An+n = Z d‘_,.A'
i=0
. where
' %o, mxOy— g, m~ %o 0
’ L]
f al.n-ao.m~l+au—l.m—lal.o
; .
an-l.m'aﬂ-l.m—'l+au-l.m—-.lan-1.0' . !
L'.+ .
: A
v
. A\
] v k.
. }
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APPENDIX G
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TRAWSIENT RESPONSE ANALYSIS ON MINI COMPUTERS

INTRODUCTION
Controls engineers have through the years, found the
4 | computer to be . valuable, if not indispensable tool. He

has found ways to harness the power of both analog and

digital devices. Hundreds of thousands of hours have been

devoted to the study of control systems by computer methods,

Simulation has become the rule rather than the exception.

Many numerical integration techniques have been dzveloped

T AT

to accomplish the required simulation. In a recent work

of J. Reitman, he noted [1].

"Historically, the control system engineers developed the
simulation methodology as an adjunct to the development of
analog computers. Now extensive use is made of digital and 3
hybrid digital-analog computer systems. To make the transition ' ]
from analog to digital computers easier, a number of digital
computer simulation languages have evolved: Mimic [2], [3],
Midas (4], Pactolus [5), CsMP [6], [7], and CSSL [8]-[10]"

e e

These simulations are performed on large to medium size

computers, The recent availability of mini computers

. B o 20

. however has had very little impact in simulating the re-

sponse of large dynamical systems. This is unfortunate

when one considers the wealth of interactive I-0 devices ' .
which would make simulation a highly animated experience. ‘?
' There are several reasons vhy the mini has fallen short

as a simulation tool, Many of them are based on economics.

However, from a ‘technical point ¥ view it can be noted

from those who have attempted to do system simulation on

a mini, become aware that a 16 bit word is often too small

45
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to avoid the "curse" of numerical instability. Here a dou-
ble precision 32 bit word (floating point) often numerically
truncates the answer at each iteration of a numerical inte-
gration scheme so as to cause the answer to diverge or be-
come a poor representation of the true solution. Of course,
high level languages can be written to work with a 4 word
(64 bit) floating point format. However, for the purpose of
simulation the resultant routine is prohibitively slow. To
overcome this problem a numerically stable and/or speed, an
algorithm is presented which will overcbme @his.cited pumér-
ical problem of conventional‘integratiqn~methods and thereby
make it suitable for mini computer use. It.isqespecially"
designed to efficiently compute the response of a'linear
constant coefficient control system to the common test inputs
of (1) as step (2) a ramp, and (3) a constant acceleration
input. . |

STATE VARIABLE MODEL

Let it be assumed that the control system under consi-
deration satisfies the following state varirble equations:

plant .
2(t) = A x(t) + bu(t) : x(0) = X, I ¢ b

with observations ,
y(t) = Cx(t) : (2)
where "o" means d/dt and x(t) and y(t) are n and m vectors

respectively. The control u(t) is to be considered to be

one of the following conventional test inputs.

[
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0 = y(t) = unforced response
(impulse response)
u(t)= C= y(t) = step response ' 3)

Ct = y(t) = ramp response

Ct2 = y(t) = acceleration response

The proposed system is diagrammed in Figure 1.

+ R I -
. (t x(t) = AN

+ n integrators

(o

Consider for the moment the following special cases

a) u(t) =0

then the system equations become
R(t) = A x(t), y(t) = C x(t) “)
b) u(t) = ¢
defining X +1 (t) = u(t) = ¢, and noting

o
X141 (t) =0, Xne1 (0) = ¢

the state equations can be written as

2 () A ! b x(t) x(0) x,
ensssos o --%000' - oo & o ’ - oa e ™ '--- (5)
R .t) Jo ; 0 x4 () X 41 (0) c
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by

and y(t) = [C O] x(t)
Xa1 (t) (6)
c) u(t) = ct
defining xn+1(t) = u(t) = ct
Xnag(t) = R.41(t) = ¢, x,1(0) =0
and noting

§n+2(t) =0, X ,p (0) = ¢

the state equations becomes

fo N - - i T ]
Xx(t) AL bl ool ) x(e) x(0) X,
-.-‘.--.--. - - e - - - o o - e o
Rar®)] = Joto i 1] x5 (0)] X1 ON=| 0} (D)
NI G (N - ] MY I
bsz(t) 0 3 010 ] [raeat® an+2(0) < |
and y(t) = [C O 0] x(t)
Xl(t) (8)
X, (t)
d) u(t) = ct?/2
defining xn+1(t) = u(t) = ct2/2
Xpag(t) = R 1(8) = ct, x_,.(0) = 0
xn+3(t) = gn+2(t) " Ch xn+2(0) -'p
and noting
gn...s(t) = 0, xn+3(0) o
the state equation becomes
48 | | i |
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x(t) x(0) Xo
e o e - f—‘--ro o o o [P — - e
2.0 Jo |o_:1 M ETIS X 47 (0) 0
- T " T |-=-~- - Y i = (9)
xn+2(t) 0 ‘0 :0 {:‘ xn+2(t) xn*z(O) C g
Lﬁms(t)J o:o:o:o x )] x5 00) cJ
and
y(t) = [C 0 0 0] [x(t) 7
xn+1(t)
xn+2(t) (10)
.xn+3(t)J

The equations found in (a) thru (d) are called the '"aug-

mented state equations' and can be generalized'in terms

of an
(i) augmented state vector, say X
(ii) augmented plant matrix, say A

(ii) augmented observation matrix, say (

such that

0
X(e) = A X (©) an
y(t) = CX (®) (12)

Equations of the form of this can be solved through
direct application of the '"state transition matrix" or,
as it is often called, the "matrix exponential",
[11], [12]. This matrix is denoted
exp (At) (13)
defines the solution of (11) to be

49
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X(t) = exp (At) X (0) (14)
Several methods have been proposed which allow the user

é : to compute the required matrix exponential. They are:

E 1. Liou method [13]

2. (sI-A)"! method [14]

é 3. matrix inversion Lemma method [15]

é 4. Davison method [16]

|

L

E

:

b

b

3

1 ]
[

3 3
'1
|
1
i
i
!
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It is the Davison method, due to its numerical
stability, which is particularly attractive. It generates
the following closed form representation of ekp (At) over

some given step size h, namely.

exp (AW) ¥ (1 - mA + B2AZT (x e mA w B7A) as)
v v T~ I

STV, W momaesrTr oE e oy e m s e b o e e e, e

s The ability to define the matrix exponential over
some small interval h is not a handicap in that it is

well-known that

WEFIATEE TS T AT T e T e

exp (AZh) = exp (Ah) *exp (Ah)
exp (A3h) = exp (AZh) *exp (Ah)

and so on. In general, X(¢h) can be computed recursive-

TV PRI e

.(16) ]

ly as follows 3

' i

E X(th) = exp (Azh)X (0) - f
| ! = exp (A(2 - 1)h) exp (Ah) X (0) :

i recursive
| An efficient technique using Bochers formula has
| been published by Taylor [17].
However, those performing simulation on a dedicated
mini are usually interested in resolving the trajectibn

compactly in time during the transient period and -

allowing the resolution along the time axis "slip" as {

the solution approaches steady state. Of course, it is :
{

31
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assumed that the amplitude wccuracy will be preserved
{ indepcndent of the time axis resolution, The algorithm
| proposed is extremely useful for such applications in

thut it can accelerate along the time axis at a very

Dt o L o R e AL o

E rapid rate. That is, suppose the current solution is

x(2h), where
~ x(zh) = exp (Ash) x (0)
and y(2h) = C X (2h)

If exp (Ath) is stored, then the solution as 2th can be

obtained by simply forming

, exp (A2:h) = exp (Azh) *exp (Azh) - (18) :;

and generating

X(22h) = exp (A2:2h) X (0)

; In general, after M operatiuns, starting at x(0),

X(ZM’lh) can be obtained. Thus the time axis can be
scanned in base 2,Asa byproduct, it can be noted that for f
M small, the solution is highly refined near t = 0. As

M increases, (suppose the trajections are asymptomatically

stable) the time axis in the steady-state region is
coarsely refined. For example, consider the simple
process g(t) = -x(t), which for h chooses to be .1

seconds, has the response x(th) = exp(-th)xo (see Fig., 2)
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Suppose that further amplitude resolution is desired.
This could be achieved as follows (see Fig. 2). Suppose
the solution currently resides at £ = 8 (t = .8) which
was the result of operating on the previously computed )
exp (42) with itself. Suppose exp (22) remained in

g memory, this would allcw the user to compute exp (62.)2
exp (42) = exp (22) and so on. The algorithm present in

this work allocates additional storage (called the

"push - down'" stack) to allow the user to create a more
dense solution space than available with the direct i

base 2 algorithm.

One last feature of the proposed algorithm shall be
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developed. From the theory of infinite matricis, it can
be shown that the steady state step response of the

original system (equation 1 and 2) is given by

y(Steady-State) = C[I - exp (Ah)] ! bh [ J. (19)

Therefore, if one is simulating a step response,
he may also choose to resolve his answer in terms of a
percent of the steady state response. That is, suppose

R(t) = -x(t) + 1(t) , x(0) = 0

y(t) = x(t) “
Therefore y(t) = 1 - exp(-t) or y(steady state) = 1.
Also, if h = ,01 then the stcady state approximating
equation yields an answer of 1.005008333 = 1. If the
user desires the amplitude resolved to at least 10% of
the steady state value then he would require that nc two
adjacent amplitudes; say y(2h) and y(mh), where m is the
successor of %, differ by no more than 10% of 1, or .1.
Suppose exp (A2), exp (A(2-1)), through exp (A(t-1)) are
stored in core. One would test a base 2 "jump" to
y(2e). If |y(2&) - y(2)|>.1 then generate y(g+2-1) =
exp (A2) *exp (A(2-1)) x(0). If |y(e+2-1) = y(r)| > .1,

test y(%) against y(2+2+2) and so on and see figure 3.
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Example

The following simple example shall be used to demonstrate the
salient features of the developed algorithm. A second order under-

damped system i1s considered and is given by

2
1) Lz—g—t-)- + 1.5 -‘-‘-%'t‘l + z(t) = 1(t)
dt

z(0) =0 , dz(0)/dt =0

11) y(t) = x(t)

The solution is known to be given by

2 /3t (¢]
y(t) = 1 -« —= gin (= + 60)
/3 2

The state representation of the above .system is

%(t) -|:° 1] x(t) = H 1(t) = Ax + bu(t)
-1 -=1.5 1

x(t) = [’“’ ] , x(0) = [0]
dz(t)/dt

y(t) = [1 0] x(t) = Cx(t)

The augmented state variable representation which simulates a step

response is (see equation (5))

. 0 1 0 1o
X(e) = AX(t) = |-1 -1.5 1] X(t) , X(0) =} o0
0 0 O 1

y(t) = CX(t) = [100] X(t)
The developed algorithm requires the user specify matrices A, C,

and the vector X(O). If a modulo 2 simulation is desired, the user

must supply
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a) step size Dt
b) terminal time

c) set the size of the push-down stack to one “1".

If a modified modulo 2 simulation is desired, the user must supply

a) step size At

b) terminal time

c) choose desired size of push-down stack
d) choose desired percent resolution

e) members of x(t) to be resolved.
It should be noted that the resolution test on state xi(t) is based

on a given percent of the steady state value of that state.

Therefore, only those states which result in a finite steady state

value should be considered as candidates to be resolved beyond the

modulo 2 resolution.

The problem under study shall be approached two ways. A

.

modulo-2 and modified modulo~2 solution shall be presented. For
the example under consideration, the steady state value of xl(t)
and xz(t) (using equation (19)) was found to be .999928 & 1 and
8.40455 x 10 -3 & 0 respectively. The state xl(t) shall be chosen
to be resolved with 15% of its steady state value. That is, no
two successive values of the modified modulo-2 simulation will

differ by at most .15. The results of these two simulations are

summarized in figure 4. It should be noted that modulo-2 algorithm

is an accurate, but coarse, representation of y(t); whereas the
modified modulo-2 algorithm is a vastly superior representation of

the actual y(t). A more highly refined algorithm is required by

.
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increasing the size of the push-down stack and decreasing the per=-
cent resolution value. If the "knee" about the point of maximum
overshoot is to be further resolved, a special routine could be
written. This routine would give xl(t) additional refinement
whenever the slope of xl(t) changes signs. That is, a local minima
or maxima is known to occur of points where the slope of that once
passes through zero. With respect to the example problem, the
region between sign changes of xz(t) (note X, (t) .dxl(t)/dt),
namely 2.4 €t < 4.8 would be further resolved.

Besides being numerically stable, the algorithm was found to
be considerably faster than conventional numerical integration
formulas. The speed increase i3 due to the algorithm's ability to
"leap frog" along the time axis. In the case of the modified
base~2 algorithm, the "leap frogging" moves in ever~increasing step
sizes provided the percent resolution test is not violated. In the
considered example for a basic step size of .0l seconds, to com—
plete a solution over 0 < t < 10, it takes

i) 1000 solution steps by Runge~Kutta methods
i1) 18 solution steps by modified base-2 methods
1i1) 9 solution steps by base-2 methods.

It should be now self-évident why the algorithm is fast, therefore,

an economic design tool.
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DESCRIPTION OF SOFTWARE

The following program is written in Extended Basic and was
implemented on a Hewlett~Packard 2100-§ minicomputer., Its use was
described in the previous section. Briefly, the generation of fﬁg’()el‘;)

(matrix exponential approximation)ia generated between statement 400
and 530. If needed, the steady state value of x(t) is generated
between statement 645 and 685. From statement 890 to 930, the
state y(£) = C exp (Alh) X(O) is produced. If an error tolerance
is requested, it will be tested frog statement 940 to 990. If the
error tolerance is violated, it is sent to statement 2000 for
resolvement. Statements 1110 to 1610 are dedicated to restacking
the push down stack. The program will loop back to 900 until the
terminal time is achieved. Once achieved, the program will process
statement 1665 to 1780 to complete the solution. The initial
parameters set consisting of A, C, and X(O) are centered as data

statements located at and beyond statement 300.
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~ LIST .
10 REM THE FOLLOWING JIMENSION MUST BE CONSISTENT WITH THE PROBLEM '
e 20 DIM X(3),Y(3],z(2),V(2),0(2),1(2]),E(2,2],F(2,2]), etz.zx 8(2.21
; 38 DIn At3,3, 0(3 31, le 31 Rt3 33, 513 3) wts 3 _
% 49 REN DUMIY ARRARYS'
s@ DIN T(180,10),Q(25@),U(10,250),L(10),D(14)
55 PRINT "DIMENSION OF STATE SrACE”
60 INPUT N6
65 PRINT "DIMENSION OF AUGMENTED STATE SPACE"
(" 7@ INPUT W
L 8@ PRINT “DIMENSION OF MESSAGE SPACE?"
; 98 INPUT NS
~ J¥8 PRINT "STEP SLZE IN SECONDS?"
1@ INPUT D
126 PRINT “TERMINAL TIME IN SECONDS?™
~ 134 INPUT F
g 140 PRINT “IF PLANT IS STABLE»*»xRESPOND | (ONE)"
- 158 INPUT T9
; "~ 168 IF T9¢1 THEN 19@
E 179 PRINT “PERCENT RESOLUTION DESIRED?”
E 180 INPUT E
: 181 FOR I=l TO N5
182 PRINT "RESCOLVE Y("3I3")? IF SO RESPOND®"3;13"@ OTHERWISE"
' 183 INPUT D(I)
, : ~ 184 NEXT I
196 PRINT "DESIRED SIZE OF PUSH DOWN STACK?"
195 INPUT NI . L
208 MAT READ X B ~
205 MAT READ A
210 MAT READ H
230 ©°RINT "INITIAL AUGMENTED STATE VECTOR™ _
240 AT PRINT X %
250 ~nINT "AUGMENTED PLANT MATRIX" e
260 NAT PRINT A o
279 PRINT "OBSERVATION MATRIX" i
280 MAT PRINT H i
290 REN LABLES 399 T® 399 ARE RESERVED FOR DATA STATEMENTS .
38 LATA ©,0,1
. 210 DATA ©,1,0
f 328 DATA <=1,-1,1
332 DATA 8,0,0
340 DATA 1,0,0
350 DATA 0,1,0
468 REM COMPUTE C
410 AT Rz A%A
420  ¥aT R=(D*D/12)#*R
43¢ MAT S=(D/2)%A : ‘
440 (AT CzR+S i
450 MAT Sz=R-S :
463 MAT R=IDN(N,N}
AT0 DAT S=S+R |
480 MAT CzC+R
499 MAT Ws INVC(R) ,
508 MAT RzW=C :

i e

PRUPISUCHIY Fpr SO
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500
510
520
521
530
540
550
600
605
elo
615
620
625
630
635
640
645
6§50
655
664
665
§7Q
675
680
685
7060
Ti0
720
750
155
760
772
780
790
800
glo
820
830
g4
850
869
870
B8
850
S08
910
9520
930
946
S50
960
965
970
380
993

1600

MAT Rz WxC
MAT C=R
PRINT "MATRIX EXPONENTIAL APPROXIMATION"
GOTO 540
AT PRINT C
REM PERCENT RESOLUTION TEST
IF T9#1 THEN 700
FOR K=l TO N6
rOR J=1 TO N6
LET E[K,J)zC(K,dJd)
NEXT J
NEXT K
MAT FsIDNIN6,NG)
MAT GsF-E
PRINT "IF MATRIX IS SIGNULAR ERROR CODPE WILL FOLLOW"™ .
PRINT * REPEAT PROBLEM WITHOUT ERROR TOLLERANCE"
MAT Ez INV(G)
FOR X=1 TO N5
LET S=0
FOR J=!1 TO N6
LET Sz H(K,J)*E[J,N€])+S
NEXT J
LET V[K)=S*D%,5
PﬁlgTK"APPROX STEADY STATE VALUE OF Y("3K3")s"3;VIK]
NEX
MAT TsZER
MAT ZsZER
MAT LsSZER
MAT R=C
MAT 1= HwX
FOR K=l TO N5
LET UK, 11=1(K])
NEXT K
LET Q(11=D
LET L{11=D
ReM Ml IS THE COMPLETED SAMPLE COUNTER
Heo N2 IS AN EXHAUSTIVE STACK COUNTER
ket NS IS A MODULO 18 COUNTER
FOR Kzl TO N
FOR L=1 TO N
LET TUK,L)=C(K,L]
NEXT L
NeXT K
LET Ml=N2=]
LET 4320
MAT Sz R*R
finl Y=SxX
AT I= HxY
IF T9#) THEN 108
MAT Q=Z-1
FOR R=) TO N5
IF K4D{K) THEN 990
LeT S1zABSCO(KIx100/VIK))
IF Sl »= E THEN 2080
NexT K
o n z: 1

1100 LET TI=LOLII+LIN3+]1])
1118 RENM RESTACX DATA
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1120 FOR K=1 TO Ni-l
1130 LET L(NI+l«Kl=L(NiI=K)
1140 NEXT X
1150 FOR K=! TO Ni=}
1160 LET Kiz(NIl=K)%|@+],00000E~04
1170 LET KI=INTCKI)
1180 FOR K3=1 TG N
1190 FOR K4a=1 TO N
1200 LET TOKI+K3,KA)zT(KI=|08+K3,K4)
i2.9 NEXT K4
1220 NEXT K3
1230 NEXT K
1500 FOR K=1 TO N
1510 FOR L=1 TO N
1520 LET T(K,L)=S5(K,L)
1530 NEXT L
1540 NEXT K
1550 LET Mizti+l
1560 AT I=HkY
1570 FOR XK=1 TO NS
1580 LET ULK,Ml)=1[K)
1590 NEXT K
1600 LET Qtill=Ti
1619 LET L{1)=T1
1650 MAT R=S
1660 IF Ti<F%2 THEN 908
1665 LET Q(i}=0
163 FOR 1=2 TO mi
1675 LET Q(tll=QlIli/z2
16o0 NEXT 1
§7806 PRINT "IN TUBULAR FORM THE OUTPUT STATES (MESSAGE) ARE' -
1712 FOR L=! TO Ml i
1728 PRINT "TIME":;QlL) i
1732 FOR K=1 TO N5
1740 PRINT ULK,L)
1750 NEXT K
1760 NEXT L
1770 PRINT "FINIS™
1780 STOP
2002 1IF Ml >z NI THEN 2048
20103 REM SET ALLOWABLE STACKX PARAMETERS
2020 IF MI=N3 <z @ THEN 30023
2040 1IF N3 >z Nl-~1 THEN 4Qcuo
2050 FOR K=! TO N .
2060 FOR L=l TO N 5
2070 LET W=INTCl1@%*N3+10.001)
2uU75 LET S:=0
2680 FOR J=! TO N
2085 LET S=TIW+K,JI»T(J,L)+S
2050 NEXT J
2055 LET RIK,L)=S
219 NEXT L
2135 NEXT K
. 2209 WMAT S=R :
2210 LET N3zN3+} : i
2220 GOTO 9520

e e o ——— .
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3000
3010
3020
3032
3040
3450
3060
3100
St
3120
4900
4010
4020
4030
4040
41350
4260
4l0a
4l1l1¢@
4120
4130
Al40
5000

SToP

PRINT “STACK DEPLETED AT STEP",MI

PRINT “LAST ERROR MAGNITUTE WAS", Sl

PRINT “DO YOU WISH TO CONTINUE WITH NEW ERROR TOLLERANCE®
PRINT " IF SO RESPOND I C(ONE>"

INPUT F8

IF F821 THEN 3100

STOP

PRINT ™ ENTER NEW PRECENT ERROR ®

INPUT E

GOTO 940

PRINT “"STACKDEPLED AT STEP™, Ml

PAINT "THE LAST ERROR MAGNITUDE WAS™,Sl
PRAINT "NEW STACK SIZE»»»xxxPREVIOUS SIZE"3NI
PRINT “OR MAXIMAL STACK SIZExkxxIF SO RESPON I (ONE)"™
INPUT F8

IF F8=1l THEN 4100

STOP .

PRINT “NEW ERROR TOLERANCE"

INPUT E

PRINT "NEW STACK SIZEx»»7.xxPREVIOUS SIZE"™,Ni
INPUT NI

GOTO 900

END
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